Adsorption of DNA oligonucleotides by titanium dioxide nanoparticles.

نویسندگان

  • Xu Zhang
  • Feng Wang
  • Biwu Liu
  • Erin Y Kelly
  • Mark R Servos
  • Juewen Liu
چکیده

Titanium dioxide (TiO2) or titania shows great promise in detoxification and drug delivery. To reach its full potential, it is important to interface TiO2 with biomolecules to harness their molecular recognition function. To this end, DNA attachment is an important topic. Previous work has mainly focused on long double-stranded DNA or single nucleotides. For biosensor development and targeted drug delivery, it is more important to use single-stranded oligonucleotides. Herein, the interaction between fluorescently labeled oligonucleotides and TiO2 nanoparticles is reported. The point of zero charge (PZC) of TiO2 is around 6 in water or acetate buffer; therefore, the particles are positively charged at lower pH. However, if in phosphate or citrate buffer, the particles are negatively charged, even at pH ∼2, suggesting strong adsorption of buffer anions. DNA adsorption takes place mainly via the phosphate backbone, although the bases might also have moderate contributions. Peptide nucleic acids (PNAs) with an amide backbone cannot be adsorbed. DNA adsorption is strongly affected by inorganic anions, where phosphate and citrate can strongly inhibit DNA adsorption. DNA adsorption is promoted by adding salt or lowering pH. DNA adsorption is accompanied with fluorescence quenching, and double-stranded DNA showed reduced quenching, allowing for the detection of DNA using TiO2 nanoparticles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of epigenetic changes of liver tissue induced by oral administration of Titanium dioxide nanoparticles and possible protective role of Nigella Sativa oil, in adult male albino rats

Objective (s): Titanium dioxide nanoparticles (TiO2 NPs) have been recognized as biologically inert material and have been used in a multitude of applications. Nevertheless, the negative impact on the human health is not yet well understood. Aim of the work: The study attempted to evaluate the epigenetic changes of the genome, in the form of DNA methylation in liver tissue samples, resulting fr...

متن کامل

Synergistic effects of Titanium dioxide nanoparticles and Paclitaxel combination on the DNA structure and their antiproliferative role on MDA-MB-231cells

Objective(s): The objective of this investigation was to evaluate the synergisticeffect of paclitaxel (PTX) combined with titanium dioxide nanoparticles (TiO2NPs)on DNA structure and to examine the proliferation of MDA-MB-231cells.Methods: This investigation performed with Ultraviolet spectroscopy, zetapotential investigation, circular dichroism (CD) spectroscopy, ELISA ...

متن کامل

Histopathological Effects of Titanium Dioxide Nanoparticles and The Possible Protective Role of N-Acetylcysteine on The Testes of Male Albino Rats

Objective Titanium dioxide (TiO2) is a white pigment which is used in paints, plastics, etc. It is reported to induce ‎oxidative stress and DNA damage. The N-acetylcysteine (NAC) was used to fight oxidative stress-induced ‎damage in various tissues. The aim of this study was to evaluate the toxic effects of TiO2 nanoparticles by oral ‎administration and the protective role of NAC on testes of a...

متن کامل

Arsenic Removal from Aqueous Solution Using Titanium Dioxide Nanoparticles (Anatase)

Background and Objectives: Groundwater sources, as strategic sources of water supply, are of particular importance for human beings. Arsenic is a toxic and carcinogenic contaminant that has been reported to be widely found in groundwater sources. In recent years, adsorption property of nanoparticles has been used to remove arsenic. The present study was performed with the aim of assessing the a...

متن کامل

Oxygen adsorption-induced surface segregation of titanium oxide by activation in carbon nanofibers for maximizing photocatalytic performance.

This research demonstrates a simple method for synthesizing titanium dioxide nanoparticle-decorated carbon nanofibers. These nanofibers showed highly efficient degradation of methylene blue under UV light because of the synergistic effects of the large surface-active sites of titanium dioxide nanoparticles and the carbon nanofibers on the photocatalytic properties.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Langmuir : the ACS journal of surfaces and colloids

دوره 30 3  شماره 

صفحات  -

تاریخ انتشار 2014